Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems.

نویسندگان

  • Raul I Hernandez-Aranda
  • Julio C Gutiérrez-Vega
  • Manuel Guizar-Sicairos
  • Miguel A Bandres
چکیده

We introduce the generalized vector Helmholtz-Gauss (gVHzG) beams that constitute a general family of localized beam solutions of the Maxwell equations in the paraxial domain. The propagation of the electromagnetic components through axisymmetric ABCD optical systems is expressed elegantly in a coordinate-free and closed-form expression that is fully characterized by the transformation of two independent complex beam parameters. The transverse mathematical structure of the gVHzG beams is form-invariant under paraxial transformations. Any paraxial beam with the same waist size and transverse spatial frequency can be expressed as a superposition of gVHzG beams with the appropriate weight factors. This formalism can be straightforwardly applied to propagate vector Bessel-Gauss, Mathieu-Gauss, and Parabolic-Gauss beams, among others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Helmholtz-Gauss beam and its transformation by paraxial optical systems.

We introduce the generalized Helmholtz-Gauss (gHzG) beam and analyze its propagation through optical systems described by ABCD matrices with real and complex elements. The transverse mathematical structure of the gHzG beam is form invariant under paraxial transformations and reduces to those of ordinary HzG and modified HzG beams as special cases. We derive a closed-form expression for the frac...

متن کامل

Airy-Gauss beams and their transformation by paraxial optical systems.

We introduce the generalized Airy-Gauss (AiG) beams and analyze their propagation through optical systems described by ABCD matrices with complex elements in general. The transverse mathematical structure of the AiG beams is form-invariant under paraxial transformations. The conditions for square integrability of the beams are studied in detail. The model of the AiG beam describes in a more rea...

متن کامل

Elliptical beams.

A very general beam solution of the paraxial wave equation in elliptic cylindrical coordinates is presented. We call such a field an elliptic beam (EB). The complex amplitude of the EB is described by either the generalized Ince functions or the Whittaker-Hill functions and is characterized by four parameters that are complex in the most general situation. The propagation through complex ABCD o...

متن کامل

Vector Helmholtz-Gauss and vector Laplace-Gauss beams.

We demonstrate the existence of vector Helmholtz-Gauss (vHzG) and vector Laplace-Gauss beams that constitute two general families of localized vector beam solutions of the Maxwell equations in the paraxial approximation. The electromagnetic components are determined starting from the scalar solutions of the two-dimensional Helmholtz and Laplace equations, respectively. Special cases of the vHzG...

متن کامل

Circular beams.

A very general beam solution of the paraxial wave equation in circular cylindrical coordinates is presented. We call such a field a circular beam (CiB). The complex amplitude of the CiB is described by either the Whittaker functions or the confluent hypergeometric functions and is characterized by three parameters that are complex in the most general situation. The propagation through complex A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 14 20  شماره 

صفحات  -

تاریخ انتشار 2006